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ABSTRACT 

 

Secure vehicular communication is a critical factor for secure traffic management. Perfect 

security in intelligent transportation systems (ITS) has solid and efficient intrusion detection 

systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-

service attacks (DDoS), especially the stealth low-rate DDoS attacks, targeting the integrity and 

availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion 

detection and mitigation techniques are proposed for the considered attacks. The performance of 

the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons 

with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed 

methods in terms of quick and accurate detection and localization of cyber-attacks.  
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CHAPTER 1: INTRODUCTION 

 

Improving transportation safety is one of the main research areas for intelligent 

transportation systems (ITS) [1]. An important facilitator for secure and reliable traffic flow is the 

data dissemination through Vehicular Ad-Hoc Network (VANET), including vehicle to vehicle 

(V2V) communications and vehicle to infrastructure (V2I) communications. VANET is a 

promising technology that enables communications between driverless autonomous vehicles, 

which are expected to dominate the future traffic, as well as traditional vehicles controlled by a 

driver [2]. VANET applications can be classified into two types as traffic safety applications and 

traffic management applications. Route planning applications for drivers is an example for the 

traffic management applications. The safety-related applications are exemplified by road condition 

applications and accident information systems. 

 In VANET, different types of data such as position information, road conditions and 

emergency messages are disseminated. The availability and integrity of such data are two essential 

aspects of VANET security. Static infrastructure elements placed near the road, called Roadside 

Units (RSUs), have a critical role in VANET. RSUs provide high connectivity and security in 

traffic. VANET components such as vehicles and RSUs typically use short-range and short-lived 

communications due to the high speed of vehicles. Considering also the potential life-threatening 

outcomes in traffic, cyber-attacks to VANET need to be quickly and accurately detected and 

mitigated. To this end, in this paper, we propose a statistical detection and mitigation method at 

RSU for cyber-attacks targeting both data availability and integrity.  
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1.1 False Data Injection Attacks Targeting Integrity 

Falsified message content may cause the drivers to take wrong actions entailing devastating 

and life-threatening results to the vehicular traffic. Autonomous vehicles are exposed to an even 

greater risk due to false data injection (FDI) attacks as their automatic decisions may rely more on 

the received VANET messages. For example, position is one of the most important information in 

VANET; when a vehicle sends wrong position information, then a nearby autonomous vehicle 

may accelerate according to the received falsified message. An effective intrusion detection 

systems (IDS) should effectively deal with FDI attacks, in which attacker sends bogus information 

to the network in order to change the vehicle behaviors in traffic. Once an intruder injects bogus 

data to the network, it should be detected and mitigated timely to prevent a major problem such as 

an accident or traffic congestion.  

There are several detection approaches for different FDI attack models. Trust-based 

security mechanisms and behavior-based security mechanisms are two common signature-based 

detection approaches for FDI attacks in the literature. However, they are mostly not 

computationally efficient, and cannot detect new attack patterns that do not conform to the known 

signatures [3],[4]. In this work, we propose a statistical anomaly detection method that can quickly 

detects FDI attacks, including the previously unseen ones, as opposed to the signature-based 

methods in VANET. Our method is implemented on RSU, and it monitors the data stream received 

from each vehicle within its communication range. We do not use any revocation list or voting list 

scheme that stores the previous message contents. Once our method detects an anomalous vehicle, 

it blocks the data transfer from that vehicle and informs the other vehicles. This cybersecurity 

mechanism prevents malicious vehicles to affect the whole traffic system including public   

transportations and private vehicles.
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1.2 DDoS Attacks Targeting Availability 

Availability of the communications is one of the main objectives in ITS. Denial-of-Service 

(DoS) attacks target the availability of network service, e.g., by sending high volume (flooding) of 

data packets to the service provider. Once a DoS attack is launched successfully on VANET, e.g., 

on RSU, the system operation shuts down such that no one can get regular service. Unavailability 

of the VANET service due to a DoS attack may cause a significant damage to the vehicular traffic. 

Compared to the FDI attack, it is easier to initiate a DoS attack for attackers as no data 

manipulation is needed; however, the FDI attack poses a bigger threat since wrong data is usually 

more detrimental than no data. In practice, to make the mitigation more difficult, attackers 

synchronously launch a DoS attack from multiple sites, which is called a Distributed DoS (DDoS) 

attack. The proliferation of Internet-of-Things (IoT) devices, in particular autonomous vehicles, 

facilitates a stealth DDoS attack, called low-rate DDoS attack [5], [6], that can easily bypass 

traditional IDSs such as data traffic filters and firewalls while still causing a significant disruption 

in the targeted service due to its synchronous nature.  

It is quite challenging to timely detect and mitigate low-rate DDoS attacks compared to the 

standard DoS attacks because the increase in the individual data rates from multiple parties with 

respect to their nominal baselines can be very low such that traditional data filtering methods 

cannot detect them. Yet, the aggregate increase in the data traffic received by the targeted server 

can be tremendous, thus, the server gets overwhelmed and stops serving legitimate users. We 

propose a powerful multivariate-statistical method for the timely detection and mitigation of low-

rate DDoS attacks to RSU. 

We summarized our contributions in this thesis in the next subsection. 
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1.3 Contributions 

In this paper, we propose a novel statistical anomaly-based detection and mitigation 

technique to address FDI attacks and flooding-based DDoS attacks targeting VANET, in particular 

RSU. Our contributions can be summarized as follows. 

• A novel statistical detector is investigated for FDI and DDoS attacks against RSU. 

• Based on the detection method a statistical anomaly localization, and accordingly 

attack mitigation method is proposed for FDI and DDoS attacks targeting RSU. 

• Performance of the proposed detection and mitigation methods are extensively 

evaluated using state-of-the-art traffic simulators and a real traffic dataset. To the best 

of our knowledge, this is the first work to use real traffic data in the cybersecurity 

literature for VANET.  

The rest of the paper is organized as follows. Related works are discussed in Section 2. The 

traffic and attack models for considered attack types are given in Section 3. The proposed statistical 

detection and mitigation methods are presented in Section 4. Numerical results are discussed in 

Section 5. Finally, the paper is concluded with future work in Section 6. Throughout the paper, 

lowercase and uppercase bold letters are used to denote vectors and matrices, respectively. 
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CHAPTER 2: RELATED WORKS 

 

2.1 False Data Injection Attacks 

Injection of fake messages is a high threat to ITS/VANET security [7]. There are several 

key features that differentiate VANET and ITS security from other network security topics, such 

as high mobility, dynamic characteristics, and life-threatening conditions. Trust-based and data-

based methods are the most common intrusion detection approaches in VANET. Trust models are 

based on voting or scoring schemes in which the reliability of a node broadcasting a message is 

voted by the other nodes receiving the message. Once the cumulative voting score exceeds a level 

against the node, it is declared as intruder, and its message dissemination is blocked [8]. Data-

centric detection models are used with emergency messages where behavior of the node and the 

received message are compared. One of the early works was presented in [9]. The authors proposed 

a data-centric malicious vehicle detection mechanism using specific alert messages that convey 

information about the emergency of traffic or emergency of the vehicle. If there is a mismatch 

between the received packets and the behavior of the node transmitting the packets, system raises 

a false data alarm, and informs other nodes about the false data and misbehaving node. In [10], a 

defense mechanism was proposed against several attack types including FDI attacks using vehicle 

reputation scores collected by RSUs. Same authors proposed a new prediction and prevention 

technique for VANET security in [11]. Both FDI and packet drop attacks are successfully detected 

and prevented using a game theory approach for predicting the future malicious vehicles, and a 

rule-based technique for detecting malicious vehicles from their behaviors.  
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In [12], authors proposed a detection mechanism doing two-level position verification by 

combining them with subjective logic. They improved previously proposed two position 

verification algorithms and defined a cumulative fusion operator in order to implement them for 

VANET.  In [13], statistical anomaly detection techniques are used to detect rogue nodes that inject 

false data into VANET. This paper uses the Greenshield traffic model which assumes close 

vehicles have similar flow, speed and density values. In a decentralized traffic, each vehicle 

calculates its own value and compares it with average received values until the average value is 

below the predefined threshold. After that, t-test is applied to these values to determine if the 

received message comes from an intruder or not. 

2.2 Denial of Service Attacks 

DoS attacks may cause catastrophic effects to the vehicular traffic, since the decisions of 

autonomous vehicles may critically depend on the communications between the vehicles and the 

infrastructure [14]. There are several solution methods proposed for DoS attacks in the literature. 

In [15], a statistical DoS attack detection model was proposed for the IEEE 802.11 DCF protocol. 

A Markov chain-based adaptive threshold was used for received Clear-to-Send (CTS) packets by 

comparing its rate. If the received CTS rate is above the threshold, the source node is labelled as 

attacker. This method is not suitable for detecting low-rate DDoS attacks. Another DoS attack 

detector was studied in [16], where MAC layer ACK/SYN packets rates are monitored and 

compared with a predefined threshold at a centralized node. A packet delivery ratio based jamming 

attack detection model for VANET was presented in [17], where two different traffic scenarios 

were considered for performance evaluation. 

 In [18], authors developed a trust-based framework named TFDD. a hybrid detection 

model which includes signature-based and anomaly-based detection model, using a data 
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verification module with honesty weight and quality weight in order to detect attacking vehicles. 

An unsupervised detection method based on the k-means clustering algorithm was proposed in 

[19] for jamming attacks in RF-based vehicular communication. In [20], we proposed an anomaly-

based IDS for mitigating DDoS attacks, which is significantly enhanced and extended to FDI 

attacks in this paper. 

 There are some other security mechanisms proposed for other attack types. Black hole 

attack or packet drop attack in which packets are deliberately dropped at a compromised node is 

another type of DoS attack that is studied in the VANET literature. For instance, [21] proposed a 

Support Vector Machine (SVM) based detection method for clustered VANET. In Sybil attack, 

attacker identifies itself as multiple nodes. For example, in [22], authors considered detecting sybil 

attacks using strength analysis for received signals with statistical position verification. 
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CHAPTER 3: SYSTEM MODEL 
 
 

3.1 VANET Model 
 

A general two-way traffic flow is considered as shown in Fig. 1. However, the proposed 

IDSs are not restricted to a specific road type; they can perform well on different scenarios such 

as one-way traffic, two-way traffic, urban area, highway area etc. Vehicle-to-vehicle (V2V) and 

vehicle-to-RSU (V2I) communications based on broadcasting take place in the considered 

VANET model to disseminate beacon messages. In general, such messages may have various 

content. In this work, we consider that each vehicle regularly broadcasts messages in the (ID, 

Speed, Position, Direction) format.  

 

Figure 1: Traffic model for the nominal case where all vehicles broadcast messages and RSU 
collects these messages. 

Road	Side	Unit
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All messages are protected with cryptographic algorithms, but such details are out of the 

scope of this paper. We assume that different pseudonyms are assigned by a central authority to 

each vehicle for providing authenticity and identification. Thus, ID of each vehicle is always 

known by the RSUs. Collected messages can be used for different purposes, but they are mostly 

used for informing other vehicles on the road. For instance, an RSU calculates the average speed 

and the density of road using the received beacon messages from the vehicles in its range, and 

conveys these calculated messages to the other RSUs to inform the vehicles that are not in the 

range. RSUs play a central role in the security of VANET. Hence, we propose a statistical IDS that 

runs at each RSU. Although the beacon messages are already encrypted for secure 

communications, the integrity, i.e., correctness, of message content, as well as the availability of 

VANET communications should be maintained. 

3.2 Attack Model 

In this work, we consider two types of attacks in VANET.  
 
3.2.1 False Data Injection Attacks 

Creating completely a false message or changing some parameters of a message may have 

a crucial impact on the traffic. Although today's traffic is not dominated yet by fully autonomous 

vehicles, in the near future it is expected that the majority of vehicles will decide by themselves 

without human interaction. In such a scenario, disseminating correct messages to other vehicles is 

a top priority for VANET. For example, a malicious vehicle conveying false messages about its 

position and speed may cause other vehicles to take wrong actions such as decreasing speed or 

changing lanes. Even without any malicious intent, faulty sensors in a vehicle may result in false 

messages. The proposed RSU-based statistical IDS can quickly detect FDI attacks, and accurately 

identify the false data type and its source vehicle. 
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3.2.2 Distributed Denial-of-Service Attacks 

 In the considered DDoS attack, the number of messages per unit time, i.e., data rate such 

as packets/sec., from multiple sources (vehicles or other devices pretending to be vehicles) 

increases synchronously (No strict synchronization is needed to perform a DDoS attack). Unless 

quickly detected and mitigated, such a flooding of messages may easily overwhelm the attacked 

RSUs to make the VANET communications unavailable. It is significantly more challenging to 

detect and mitigate low-rate DDoS attacks than the traditional high-rate DDoS attacks. The 

aggregate data rate received by the RSU is still high enough to take it down; however, the increase 

in individual data rates of attacking nodes is low such that they easily remain undetected by 

traditional IDS, such as data filters and firewalls. Despite its low-rate increase in the individual 

data rates, the greatness in the number of attacking nodes is what makes a low-rate DDoS attack 

threatening.  

The proposed statistical IDS monitors the data rate, thus it is not restricted to the data 

format defined above. In the following sections, we show that the proposed IDS can effectively 

handle both low-rate and high-rate DDoS attacks, as opposed to the traditional data filtering 

methods. 
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CHAPTER 4: STATISTICAL INTRUSION DETECTION SYSTEM 

 

In general, anomaly-based IDS works by comparing the observed data instances with the 

statistical model of nominal operation learned from training data, and possibly also with the 

anomalous statistical model learned from training data as well. Anomaly-based IDS can be 

categorized considering three aspects: availability of training data, parameterization of statistical 

model, and sequential decision making.  

In terms of availability of training data, anomaly-based IDS can be categorized into groups, 

semi-supervised and supervised. If there is only nominal training data, IDS aims to detect the 

significant deviations from the learned nominal statistical model, which is called the semi-

supervised setting. Whereas, in the supervised setting, IDS builds also a statistical model for the 

considered attacks using available data instances from previous attack cases, and compares the 

goodness-of-fit (e.g., likelihood) of the observed data under the nominal and attacks models.   

In terms of model parameterization, there are also two types, parametric and nonparametric 

methods. While parametric methods try to fit certain parametric probability distributions (e.g., 

Gaussian, Poisson, etc.) to the data, nonparametric methods try to learn statistical patterns from 

data without assuming certain probability distributions (e.g., distance-based and histogram-based 

methods).  

Finally, in terms of sequential decision making, we also have two groups: outlier detection 

methods and sequential anomaly detection methods. Outlier detection methods decide for each 

observed data instance as either nominal or anomalous. However, sequential methods updates a 
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decision statistic using each observed instance, and decides for anomaly when there is enough 

statistical evidence for anomaly. Mathematically, their objective is to minimize the expected 

number of data instances used to detect anomaly while satisfying a constraint on false alarm 

probability. The challenges in implementing an anomaly-based IDS in VANET can be summarized 

as follows. 

(C1) Unknown attack patterns: As opposed to the traditional computer networks and the 

Internet, the possible attack patterns (i.e., signatures) are mostly unknown in the emerging 

field of ITS/VANET security. Hence, conventional signature-based IDS, which can only 

detect the known attack signatures, and supervised anomaly-based IDS are in general not 

suitable for VANET.  

(C2) Disparate data types: Since anomalies occur relative to the context defined by the 

entire data dimensions, they should ideally be jointly monitored through multivariate 

analysis. However, due to the disparate data types conveyed in messages, the multivariate 

probability distribution of the message content is quite complicated. For instance, speed 

data is numerical, direction is angular, and position is numerical/angular. As a result, 

parametric anomaly detection methods, which try to fit tractable probability distributions 

to the training data, are not feasible here. 

(C3) Timely and minimally invasive mitigation: Considering the life-threatening and 

economic concerns of a failure in VANET communications, cyberattacks should be 

quickly mitigated in a minimally invasive manner. The identification of malicious users 

should also be accurate such that the legitimate users continue receiving regular service. It 

is known that sequential methods are much more effective in timely detection than outlier 

detection methods [23]. 
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To address the challenges above we next propose a statistical IDS based on a semi-

supervised, nonparametric and sequential anomaly detection technique, called the Online 

Discrepancy Test (ODIT). 

4.1 Attack Detection Using ODIT 

ODIT, which was recently proposed in [24], is a computationally efficient real-time 

anomaly detection algorithm that scales well to large systems [25]. 

ODIT addresses well the challenges (C1)-(C3) thanks to its semi-supervised, 

nonparametric and sequential anomaly detection methodology, respectively. Its semi-supervised 

and nonparametric nature follows an outlier detection method called Geometric Entropy 

Minimization (GEM) [26]. The decision making procedure of GEM is not sequential. It decides 

for each observed data instance as nominal or anomalous, which makes it vulnerable to high false 

alarm rate due to the limitation of statistical significance tests [27]. ODIT successfully combines 

the semi-supervised and nonparametric features of GEM with the sequential decision making of 

the Cumulative Sum (CUSUM) change detection algorithm [28]. CUSUM, on the other hand, is a 

parametric method as it requires the complete knowledge of probability distributions under 

nominal and anomalous cases. When the assumed distributions exactly match with the actual 

distributions, CUSUM is known to be minimax optimum in terms of minimizing the average 

detection delay while satisfying a false alarm constraint [29]. The minimax setting refers to the 

worst-case scenario with the least favorable anomaly time and observation history. The practical 

version of CUSUM, called Generalized CUSUM (G-CUSUM), in a supervised fashion, estimates 

the parameters of assumed nominal and anomalous probability distributions from training data, 

i.e., fits the assumed distributions to the available data. Due its dependency on anomalous training 

data and parametric models G-CUSUM cannot address the challenges (C1) and (C2), respectively. 
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Consider that each data instance i 𝜖𝑅#	is a d-dimensional real-valued vector representing 

the observed d data dimensions {𝑥'(, . . . . . . , 𝑥'#} depending on the application. The specific 

definition of data dimensions is given in Sections 4.3 and 4.4 for FDI and DDoS attacks, 

respectively. In ODIT, there is no assumption on the probability distributions of data dimensions, 

e.g., they can be correlated or even follow disparate distributions. It is only assumed that each data 

dimension can be normalized, e.g., using mean and standard deviation, or upper and lower bounds, 

or some practical bounds such as 5th and 95the percentiles. Normalization is needed to deal with 

the heterogeneity among data dimensions. 

In the training phase of ODIT, firstly training data 𝒳-	is randomly partitioned into two sets 

𝒳-(	and 𝒳-.	, where N1+N2=N, for computational purposes as in the Bipartite GEM algorithm 

[30]. Then, for each data point in 𝒳-(	,  k nearest neighbors (kNN) in 𝒳-.	in terms of Euclidean 

distance are found. For each point i in 𝒳-(	the total distance Li is computed as 

 

where 𝑒'0 is the Euclidean distance from point i in 𝒳-(	to its jth nearest neighbor in 𝒳-.	. The 

weight 𝛾 > 0	and the number of considered neighbors s, which is a number between 1 and k, are 

introduced to increase the flexibility of method. 

Next, for a significance level 𝛼, for which a typical choice is 0.05, the (1 − 𝛼) th percentile 

𝐿: of {𝐿': 𝑖 = 1. . . . . 𝑁(}	values is found, where 𝑀 = [𝑁((1 − 𝛼)]. The 𝐿: value is later used as a 

baseline in the test to evaluate the anomaly evidence in the test instances. During the training 

phase, actually an Euclidean kNN graph is formed between (1 − 𝛼)% of the points in 𝒳-(	 with 

the smallest	𝐿' values and their neihbors in 𝒳-.	, as illustrated in Fig. 2. As we will show next, in 
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the test phase of ODIT, we actually evaluate how far/close a test instance is in becoming a vertex 

in this graph if it were to be included in 𝒳-(	. From another perspective, (1 − 𝛼)% of the points 

with the smallest 	𝐿' values in 𝒳-(	is an estimate of the “minimum volume set” which is the most 

compact set that has at least (1 − 𝛼) probability [26], and in the test phase, we measure how 

far/close a test instance is to be included in this most compact set. 

 

Figure 2: Proposed detection procedure based on ODIT with 𝑁( = 5,𝑁. = 10, M = 4, k = 2, s = 
1, 𝛾 = 1. 𝐿( − 𝐿: and 𝐿( − 𝐿: are used to update the test statistic 𝑠D and raise an alarm at time T 
as shown in (2)-(4). Training and test points are generated from a bivariate normal distribution 
with independent components, 0.5 mean and 0.1 standard deviation. 
 

In the test phase, to evaluate the anomaly evidence in a newly observed instance 	𝑥D at time 

t, we compute how small/big the total distance 	𝐿D of 	𝑥D compared to the baseline 	𝐿:, which 
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corresponds to a boundary point in the most compact set of nominal points. Specifically, at each 

time t we compute the total distance 	𝐿D	as in (1), and the anomaly evidence 

 

which asymptotically behaves like the log-likelihood ratio between a uniform distribution and the 

nominal distribution [24]. Note that the anomaly evidence provided by 	𝐷D can be positive or 

negative. Unlike the outlier detection methods such as GEM, ODIT does not decide for each 

instance, but rather accumulates the anomaly evidences over time by updating its decision statistic 

as 

 

and decides for an anomaly only when enough evidence is accumulated in the decision statistic, 

i.e., at time 

      

The detection threshold h manifests a trade-off between minimizing detection delay and 

minimizing false alarm rate. For example, higher h decreases the false alarm probability at the 

expense of larger average detection delay, and vice versa for lower h. In practice, h can be set such 

that a desired false alarm probability is satisfied. The selection of other parameters also indirectly 

affect this fundamental trade-off of quick and accurate detection. Particularly, for bigger/smaller 

number of neighbors k, ODIT becomes more/less robust to noise (i.e., nominal outliers), but at the 

same time the less/more sensitive to anomalies. In turn, bigger/smaller k result in lower/higher 

false alarm rate and longer/shorter average detection delay. The parameter s is auxiliary to k, and 

yields similar effects in the algorithm. The significance level 𝛼 does not play a central role in 
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ODIT, as opposed to GEM, in which 𝛼 directly controls the essential trade-off between the 

detection probability (i.e., true positive rate) and false alarm probability (i.e., false positive rate). 

In ODIT, the affect of the 𝛼 choice can be compensated by the decision threshold h, which is the 

ultimate parameter that directly controls the balance in detection performance. Hence, in practice, 

first a typical value, such as 0.05, is selected for 𝛼, and then h is chosen to satisfy a desired false 

alarm rate. 

4.2 Attack Localization Using ODIT 

Detecting an attack is in general not the final task for successful mitigation. Especially for 

low-rate DDoS attacks, identifying the attacking nodes is a challenging task that must follow 

detection. Otherwise, after the detection, RSU will either disregard the entire data traffic or wait 

with no further action until the excessive incoming data paralyzes it. In either case, the DDoS 

attack would be successful in making the RSU service unavailable. To this end, we next propose 

a statistical anomaly localization technique for ODIT to identify the anomalous data dimensions. 

In (4), detection occurs due to an increase in the decision statistic 𝑠D, given by (3), which 

is caused by recent positive anomaly evidence(s) 𝐷D, given by (2). Moreover, positive 𝐷D happens 

due to the total distance 𝐿D being greater than the baseline 𝐿:. From (1), we know that 𝐿D is the 

sum of s Euclidean distances of data instance 𝑥D to its {𝑘 − 𝑠 + 1, . . . . . , 𝑘}th nearest neighbors. 

Since, for 𝛾 = 2, each Euclidean distance to a neighbor is the sum of squared distances in the d 

data dimensions, 𝐿D can be written in the following alternative form 

 

and 𝑥DI and 𝑦0I are the nth dimensions of the data instance𝑥D  and its jth nearest neighbor 𝑦0. Note 

that ℓDI denotes the contribution of dimension n to the total distance 𝐿D. Thus, after detection, we 
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can investigate each dimension's contribution to the attack alarm by analyzing some recent ℓDI right 

before the detection time T. We determine the number of recent ℓDI values contributing to alarm 

by first identifying the last time instance q when the decision statistic 𝑠D was zero and then started 

increasing, which can be seen as an estimate for the attack onset time. Then, the average 

contribution from each dimension n to the attack alarm is computed as 

 

where T is the detection time, given by (4). Finally, each dimension n is identified as attacking if 

its average contribution is sufficiently high, i.e.,ℓI ≥ 𝜆. The threshold 𝜆 controls the trade-off 

between false positive and true positive rates, as shown in Fig. 14. It is typically selected to satisfy 

a constraint on the false positive rate [31]. 

The proposed attack detection and localization technique is summarized in Algorithm 1. 

4.3 Proposed IDS for FDI Attack 

In this section, we propose an IDS based on ODIT for FDI attack. In the proposed IDS, 

each RSU runs a separate ODIT detector for each vehicle that it receives messages from. In 

particular, an RSU starts to monitor a vehicle by updating a decision statistic 𝑠D (see (3)) for it 

when the vehicle enters its range until either the vehicle exits the range or an anomaly in the 

message content is detected. The data instance 𝑥D consists of three components, namely the speed, 

position, direction of the vehicle. The nominal training data 𝑋- is obtained through historical 

observations in the range of RSU. If the range is composed of heterogeneous road segments with 

different speed and direction baselines, then multiple training sets, and accordingly multiple 𝐿: 

obtained for such road segments. Depending on the vehicle's position the test instance 𝑥D is then  
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compared with the corresponding road segment's baseline 𝐿: value. Algorithm 1 is used to detect 

and localize FDI attacks. Once a vehicle is detected as anomalous, RSU informs the other vehicles 

and RSUs. Depending on the system operator's choice, either the identified anomalous dimensions 

or the complete messages from the detected vehicle are ignored. The flowchart of the proposed 

IDS is given in Fig. 3. 

4.4 Proposed IDS for DDoS Attack 

A straightforward approach to DDoS detection is through comparing the incoming message 

rate (i.e., number of messages per unit time) from each vehicle with a threshold. Although this 

method can stop brute-force attacks in which attackers transmit burst of data messages at a high  
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Figure 3: Flowchart of the proposed IDS for FDI attacks. 

rate, it would not be effective against stealth low-rate attacks in which each attacker transmits 

messages at a close-to-nominal rate, yet synchronously they can overwhelm the RSU. Admittedly, 

the straightforward approach that compares the total data rate from all vehicles with a threshold 

can easily detect DDoS attack (either high-rate or low-rate); however, it cannot identify the 

attackers to stop the attack. To this end, we propose a statistical IDS that jointly monitors vehicles 

through ODIT. Since the number of vehicles in the range of an RSU varies over time, for joint 

(i.e., multivariate) monitoring of data traffic, we consider total message rates in a number of 

predetermined road segments as the input data to the ODIT algorithm, 𝑥D = [𝑥D(, . . . . . , 𝑥DI] where 

𝑥DI is the message rate from road segment n at time interval t (see Fig. 5). When a DDoS attack is 

detected and localized using Algorithm 1, the data traffic from the identified road segments are 

blocked to mitigate the attack. Since the proposed algorithm is sequential in nature, it can 

dynamically detect and mitigate DDoS attacks due to moving vehicles in real-time. The proposed 

IDS for mitigating DDoS attacks is summarized in Fig. 4. 

Train IDS using past (speed,direction,position)

data for the road in Algorithm 1.

Test each vehicle entering the range using Algorithm 1

until an attack is detected or vehicle exits the range.

Attack
detected?No

Yes

Localize the attack using Algorithm 1.

and inform the other RSUs and vehicles about the attack.

Ignore the messages from the vehicle partially or completely,
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Figure 4: Flowchart of the proposed IDS for DDoS attacks. 

 

Figure 5: DDoS attack model where red cars are attackers and thick red lines denote the increased 
data rates. 

Train IDS using past (msg.rate 1,. . .,msg.rate d)

data for the d road segments in Algorithm 1.

Test the observed message rates from d road segments

Attack
detected?No

Yes

Localize the attack using Algorithm 1.

and inform the other RSUs and vehicles about the attack.

Ignore the messages from the identified road segments,

at each time instance using Algorithm 1.

1													2										3															 n d

Road	Side	Unit

Road	Segments
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CHAPTER 5: PERFORMANCE EVALUATION 
 
 

In this section, we evaluated the performance of the proposed IDSs using a real dataset for 

FDI attack and simulated data for DDoS attack. 

5.1 Detection Results for FDI Attack 

5.1.1 Experiment Setup 

We use the Warrigal dataset, collected by the University of Sydney in an industrial area 

over a period of three months with 1 Hz resolution [32]. Each message in the dataset consists of 

position, speed and direction information. Position information is given in three dimensions as 

easting, northing and altitude in meters. Speed and direction values are provided in meter/second 

and degrees, respectively. The histograms of training data for position (easting), speed and 

direction are shown in Fig. 6. Due to the heterogeneity, it is not tractable to estimate the joint 

distribution for parametric methods. Since our IDS runs at an RSU, we consider only a portion of 

available data which is collected from a few km road range, where RSU is assumed to be located 

at the center. The proposed IDS is implemented at the RSU following the flowchart presented in 

Fig. 3.  

In order to generate FDI attack scenarios, we separately injected anomalous data in each 

dimension. In each scenario, anomalous data is injected into one of the data dimensions of a 

randomly selected set of vehicles (i.e., attacking vehicles). Anomaly rates for position and 

direction are 30% and 40% of the nominal values, respectively. After anomaly injection, the 

falsified speed values of attacking vehicles go up to 22 m/s (50 mph), which is still in the nominal
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range of training data as shown in Fig. 6. For each test, anomaly is inserted in one of the message 

dimensions for only 20 seconds. 

 

Figure 6: The heterogeneous probability distributions of message contents in the Warrigal dataset. 
Histograms are obtained from the training set. 
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5.1.2 Results 
 

We compare the performance of proposed IDS on FDI attacks with state-of-the-art 

sequential and voting-based methods in the literature. 

We start with comparing the quick and accurate detection performance of the proposed 

IDS with an idealized version of the state-of-the sequential detector, G-CUSUM, which fits a 

probability distribution to nominal data and somehow exactly knows the attack magnitudes in the 

anomalous data. In practice, it is not tractable for G-CUSUM to know the actual attack magnitudes. 

Since the data distribution for each dimension in Fig. 6 is somehow close to two gaussian sub-

distributions within overall one distribution, which is named as a Gaussian Mixture Model 

(GMM), G-CUSUM assumes a GMM type of probability distributions for both nominal and 

anomaly data. Three FDI attack scenarios are investigated for anomalies in the speed, position, 

and direction data, whose results are given in Fig. 7. Middle figure in Fig 7 shows the results for 

the case when anomaly is in easting dimension of position in which similar results are observed 

with northing dimension of position as well. The data-driven nature of ODIT enables much quicker 

detection while satisfying the same false alarm rates compared to G-CUSUM. ODIT learns the 

nominal baseline from data and detects the deviations from this baseline, whereas G-CUSUM 

suffers from the mismatches between the assumed and actual probability distributions for the 

nominal and anomalous data. 

Since voting-based IDS is a popular choice in the literature, we next compare the proposed 

IDS with a number of voting-based IDSs, namely HBID [13], ELIDV [10], and DCMD [9]. These 

systems run on each vehicle where each received message content is examined with a voting 

scheme. A main performance difference between such models and ODIT is that while the detection 

accuracy for these systems decreases with increasing number of anomalous vehicles due to the in- 
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Figure 7: Comparison in terms of quick and accurate detection under different FDI attack scenarios 
between the proposed detector and an idealized version of the state-of-the-art sequential detector 
(G-CUSUM) which exactly knows the attack magnitudes. 
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herent rules of voting, that of ODIT is not affected since each vehicle is monitored at the RSU. 

This fact is illustrated in Fig. 8 in terms of true positive rate and false positive rate, respectively, 

considering the anomalous speed scenario. The proposed ODIT detector achieves 100% detection 

(true positive rate) and 0% false alarm (false positive rate) in the considered FDI attacks regardless 

of the number of attackers. Whereas, the performance of voting schemes quickly degrades after 

the percentage of attackers in the entire vehicle population reaches a certain threshold. For ODIT, 

successful detection (true positive) is defined as raising an anomaly alarm within the first 12 

seconds after the attack starts. 

5.2 Detection Results for DDoS Attack 

5.2.1 Experiment Setup 

In this section, we evaluate the performance of proposed IDS for low-rate DDoS attacks 

targeting the availability of VANET communications. As shown in Fig. 5, we split an RSU range 

into equal road segments. Total number of received message from a road segment in a time interval 

is considered as the message rate observations, which mainly depend on the number of vehicles 

and speed of vehicles. For example, if traffic flow decreases, leading to a rise in the number of 

vehicles on the road, the message rate increases on the road segments. 

For the simulation study, we use three framework together: OMNET++ [33], SUMO [34], 

and Veins [35]. OMNET++, which is a general network simulator, creates a VANET environment. 

Simulation of Urban Mobility (SUMO) and Veins are the two supportive frameworks, where 

SUMO provides a mobility model for VANET and Veins creates an interface between SUMO and 

OMNET++. While vehicles are moving on the roads in SUMO, they are identified as a mobile 

node in OMNET++ by the help of Veins. We based our simulations on the IEEE 802.11p vehicular 



www.manaraa.com

 27 

communication protocol [36], but since our model does not specify any communication protocol, 

our DDoS detection algorithm can be used with other protocols as well.  

 

Figure 8: Comparison considering FDI attack in speed values between the proposed ODIT detector 
and several voting-based detectors from the literature. 
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Figure 9: Simulation map showing Fowler Ave. 

We simulate a realistic scenario with SUMO by using a real road map, which is a small 

section of Fowler Ave. next to the University of South Florida (USF) in Tampa (See Fig. 9). 

Selected road section is partitioned into 20 segments with 50 meters width for each road segment. 

In order to have a realistic dataset, there is no restriction on vehicular movements where all 

vehicles follow their randomly generated routes, i.e., they can join or leave the main road at any 

intersection. Average number of vehicles in the simulation area is 250. 

With the given simulation parameters in Table 5.1, 4 hours of traffic is observed for 

learning the training baseline and 33.3 hours of traffic is observed for the test purposes. After 

saving all the log files, data rates for each road segment are calculated on MATLAB, and 600 test 

trials of 200-second duration are obtained. We generated anomaly data in MATLAB from uniform 

distribution for two different DDoS attack scenarios. We consider 0.3 times mean increase for the 

first scenario, and 1.5 times mean increase for the second scenario with respect to the 
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corresponding nominal baseline. Anomalies are inserted on top of the nominal data in 2 of the 20 

road segments from 181st second to 200th second. 

Table 5.1: Simulation Parameters 

 
 

5.2.2 Results 

We compare the proposed IDS with the state-of-the-art sequential G-CUSUM detector, 

e.g., [37], and the data filtering method, e.g., [16]. G-CUSUM assumes a probability distribution 

for nominal and anomalous data, whereas the data filtering approach looks for an increase in the 

total data rate received by RSU without performing any statistical analysis. In Fig. 10 and Fig. 11, 

it is seen that the observations from two road segments, to which anomaly is added, follow different 

distributions. While the distribution of one road segment is similar to negative binomial (Fig. 10), 

which is indeed a Poisson distribution with conjugate prior (i.e., Gamma distribution) on the rate 
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parameter, the distribution of other road segment is similar to Gaussian (Fig. 11). Hence, we 

examine two idealized versions of G-CUSUM which fit negative binomial and Gaussian 

distributions for each road segment, and somehow exactly know the attack magnitudes of 30% and 

150%. 

For both attack scenarios with 30% and 150% average mean increase from the nominal 

mean rate, Fig. 12 and Fig. 13 show that the proposed IDS outperforms the G-CUSUM approach 

and the data filtering approach in terms of quick and accurate detection. In particular, the proposed 

IDS achieves much smaller average detection delay while satisfying the same false alarm rates 

(e.g., for 0.01 false alarm rate, approximately 1/2 times and 1/5 times in Figs. 12 and 13). 

Moreover, the G-CUSUM and data filtering approaches have certain practical disadvantages 

compared to the proposed IDS. The data filtering method can only detect such low-rate attacks by 

monitoring the total number of packets received by the RSU since the individual data rates from 

road segments still appear to be harmless to the network. As a result, it is not tractable for the data 

filtering method to localize and mitigate the attack. For G-CUSUM, indeed there is no way to 

exactly know the actual attack magnitudes. In practice, a number of parallel tests with different 

assumptions for the attack magnitude can be applied, however even for the best test that alarms 

first, the mismatch between the assumed anomaly distribution and the actual distribution would 

cause significant performance degradation. As shown in Figs. 12 and 13, even the ideal G-CUSUM 

which exactly knows the attack magnitude suffers from the deviations of the observed data from 

the assumed probability distributions. Furthermore, G-CUSUM inevitably follows a univariate 

approach by assuming independence between road segments [38] since it does not know which 

road segments will include anomaly. The multivariate nature of the proposed ODIT detector also 

facilitates its superior performance. 
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Figure 10: Histogram of number of packets for a road segment. First histogram represents the 
distribution of nominal data, whereas second and third represent attack cases with an average 
increase that is 0.3 and 1.5 times the baseline, respectively. Nominal and attack distributions are 
close to negative binomial distribution with extended tails under attacks. 
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Figure 11: Histogram of number of packets for a road segment. First histogram represents the 
distribution of nominal data, whereas second and third represent attack cases an average increase 
that is 0.3 and 1.5 times the baseline, respectively. Nominal and attack distributions are close to 
normal distribution with extended tails under attacks. 
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Figure 12: Comparison in terms of quick and accurate detection for an average DDoS attack 
magnitude of 0.3 times the nominal mean data rate between the proposed method, two idealized 
G-CUSUM variants which exactly know the attack magnitude, and the data filtering method. 
 

 
Figure 13: Comparison in terms of quick and accurate detection for an average DDoS attack 
magnitude of 1.5 times the nominal mean data rate between the proposed method, two idealized 
G-CUSUM variants which exactly know the attack magnitude, and the data filtering method. 
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5.3 Localization Results 

We next evaluate the attack localization performance of the proposed IDS using the 

receiver operating characteristic (ROC) curves, which presents the achieved true positive rates 

while the algorithm satisfies different levels of false positive constraints. Firstly, we consider the 

identification of attacking vehicles in the FDI attack scenario (anomalous speed case). Since in 

this case the proposed ODIT detector is applied to each vehicle and the messages include the 

vehicle ID, there is no need for a separate vehicle identification mechanism after detection. 

Specifically, once ODIT alarms for a vehicle, this vehicle is automatically identified as attacking. 

In the anomalous speed scenario, by selecting the detection threshold as h = 2, in all test trials, the 

proposed IDS achieves zero false alarm for non-attacking vehicles and 100% correct detection of 

attacking vehicles with a maximum delay of 12 seconds (First figure in Fig. 14).  We next consider 

the identification of anomalous data dimension using the localization strategy given in (6) and 

summarized by Algorithm 1. Second figure in Fig. 14 displays the perfect detection of the 

anomalous speed data while satisfying zero false alarm in all test trials.  

Finally, the identification of road segments in the DDoS attack scenario using Algorithm 

1 is considered. As demonstrated by third figure in Fig. 14, the proposed IDS successfully 

identifies the anomalous road segments with a high correct detection rate (e.g., 94%) while 

satisfying a small false alarm rate (e.g., 5%). 
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Figure 14: ROC curves for ODIT's anomaly localization performance. First figure is for 
identification of anomalous vehicles in FDI attack to speed data. The second one is for 
identification of anomalous data in FDI attack to speed data. The last one is for identification of 
anomalous road segments in DDoS attack. 
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CHAPTER 6: CONCLUSION 
 
 

We proposed a statistical nonparametric intrusion detection system (IDS) for online 

detection of false data injection (FDI) attacks and distributed denial-of-service (DDoS) attacks. 

The proposed system runs at road side unit (RSU) monitoring the broadcasted messages from the 

vehicles in its range. To be specific in the FDI attack case, we considered the (ID, speed, position, 

direction) message format; however, the proposed IDS is based on a generic anomaly detection 

algorithm, and thus easily extends to other data types. Similarly, the IDS proposed for DDoS 

attacks is applicable to any data type and communication protocol as it monitors the data rates (i.e., 

number of packets in unit time) from a number of road segments. An attack localization procedure 

was also proposed to follow up on an alarm raised by the detection procedure. As the final stage 

in attack mitigation, RSU drops the messages from identified vehicles for FDI attacks and from 

identified road segments for DDoS attacks. The detection and localization performances of the 

proposed IDS are evaluated in the FDI and DDoS cases using a real traffic dataset, called the 

Warrigal dataset, and state-of-the-art traffic simulators, respectively. To the best of our knowledge, 

this work is the first to use a real dataset in VANET cybersecurity. Experiment results 

demonstrated the superior performance of the proposed IDS in terms of quick and accurate 

detection and localization compared to state-of-the-art voting schemes, parametric sequential 

change detection algorithm, and the data filtering method. As a future work, we plan to extend the 

proposed IDS to other attack types.  
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